Los que llevamos ya bastantes años impartiendo clases de descripción estadística de datos, también llamada estadística descriptiva, recordamos con cariño la obra de Gérard Calot, Cours de Statistique Descriptive (Dunod, París, 1965) que algunos conocimos ya en su versión castellana, Curso de Estadística Descriptiva (Paraninfo, Madrid, 1974).
Se trataba de un libro que conjugaba la precisión en el empleo de los términos estadísticos con una sencillez en la argumentación, sencillez que no estaba reñida con el rigor en las demostraciones matemáticas.
Porque, en aquellos tiempos, la estadística descriptiva no se solía enseñar en las licenciaturas de Matemáticas, pues se consideraba una derivación menor, más bien correspondiente a la Sociología, la Psicología o la Economía.
Mucho han cambiado las cosas desde entonces, y hoy día el tratamiento estadístico de la información ocupa un lugar de honor, no sólo en el campo de las aplicaciones estadísticas sino de la propia estadística matemática.
De forma paralela, ha ido cambiando el propio panorama bibliográfico, incrementándose tanto la oferta de producción nacional como (más escasamente) las traducciones de obras extranjeras, en general anglosajonas. Este incremento se ha orientado, en general, a cubrir dos lagunas. Por un lado, la inmersión de la estadística descriptiva en el seno de otras ramas del conocimiento; y por otro, la difusión de las posibilidades del software estadístico y econométrico en cuanto al tratamiento de los datos y a las derivaciones inferenciales de dicho tratamiento.
Por ello, la aparición del libro de las profesoras Castillo y Guijarro llena, sin duda alguna, un vacío bibliográfico de libros precisos en las definiciones y en su desarrollo, un libro en el que los lectores no encontrarán ni imprecisiones ni incorrecciones.
Pero la mayor innovación que se aprecia en la obra es su formato, que corresponde al de los denominados «libros de problemas». Así, las autoras no apabullan al lector (al estudiante) con una impactante y densa enumeración exhaustiva de los resultados y sus demostraciones. La presentación de los temas se realiza a través de un breve y bien organizado resumen que aborda únicamente los conceptos centrales en estudio. Las ampliaciones se presentan dentro de los problemas, a través de sucesivos ejercicios que siguen el esquema de definición-ejemplo-resultados complementarios.
Este estilo disminuye la aridez de los desarrollos, facilitando la incorporación de los estudiantes a los contenidos propuestos. Además, permite realizar diversas lecturas de los materiales, desde una más básica, que de cada tema extrae los rasgos más elementales, hasta la más sofisticada, para la que se definen conceptos más elaborados y se demuestran resultados formales de cierta complejidad, si bien ello se realiza, como se ha dicho más arriba, a través de la presentación de ejercicios que consecutivamente sitúan los conceptos como ampliaciones de materiales más elementales.
Como las profesoras indican en su presentación, los temas tratados cubren las necesidades de la docencia en descripción estadística de datos que forman parte de los programas de las asignaturas de Introducción a la Estadística de las titulaciones de Ciencias Sociales (Administración y Dirección de Empresas, Economía, Empresariales, Sociología, Relaciones laborales o Sociología, por citar las más notables). Incluso se aborda un capítulo dedicado al cálculo de probabilidades, material que las distintas programaciones docentes sitúan indistintamente al final de las disciplinas introductorias o en el inicio de las disciplinas dedicadas al estudio de las distribuciones estadísticas y de los procedimientos inferenciales.
Contenido:
Prólogo
Introducción
Capítulo 1. Distribuciones de frecuencias unidimensionales
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Capítulo 2. Distribuciones de frecuencias bidimensionales
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Capítulo 3. Análisis de atributos
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Capítulo 4. Números índices y tasas de variación
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Capítulo 5. Análisis clásico de series de tiempo
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Capítulo 6. Introducción al cálculo de probabilidades
• Principales conceptos y resultados
• Aplicación de conceptos y demostración de resultados
Contraseña: www.freelibros.org
No hay comentarios.:
Publicar un comentario